[as] radici

Tra meccanica e termodinamica

di Giovanni Battimelli

Gli atomi e le molecole esistono davvero, o sono solo una utile finzione per spiegare le proporzioni fisse con cui si combinano i vari elementi nelle reazioni chimiche? E se a livello microscopico la materia è davvero costituita da mattoncini discreti, è possibile ridurre le leggi empiriche della termodinamica a una spiegazione più profonda, basata sulle leggi della meccanica che regolano il moto molecolare? Sono tra le domande principali che agitano il panorama, teorico e sperimentale, della fisica della seconda metà dell'800. Quando nel 1866 Boltzmann pubblica il suo primo lavoro sull'argomento, la teoria cinetica dei gas ha già ottenuto alcuni primi incoraggianti risultati. L'anno prima, Clausius ha ricavato l'espressione che lega la temperatura di un gas all'energia cinetica delle sue molecole e, nello stesso anno 1866, James Clerk Maxwell ricava, facendo ricorso a semplici assunzioni probabilistiche, la legge di distribuzione delle velocità molecolari per un gas all'equilibrio termodinamico. In tutte queste relazioni compaiono delle costanti, il cui valore resta indefinito, data l'incertezza con cui sono stimate all'epoca grandezze come la massa e le dimensioni degli oggetti microscopici o il numero di Avogadro (vd. p. 36, ndr). Comunque, la prospettiva di dare del primo principio della termodinamica una interpretazione puramente meccanica sembra ben stabilita: la legge generale di conservazione dell'energia, nelle sue varie forme, si riduce al teorema di conservazione dell'energia meccanica in un insieme isolato di punti materiali interagenti.

Più problematico appare il compito di fornire analoga interpretazione meccanica del secondo principio della termodinamica, quello appena condensato da Clausius nell'asserzione che un sistema isolato evolve irreversibilmente verso uno stato finale di equilibrio attraversando stati caratterizzati da valori sempre crescenti dell'entropia. È il compito cui si accinge Boltzmann, e che crede di aver risolto in un monumentale lavoro del 1872 sulla teoria cinetica dei gas, in cui ricava l'equazione che descrive l'evoluzione temporale dello stato del sistema (modellizzato come un insieme di sfere rigide soggette a collisioni elastiche). A partire da questa equazione, Boltzmann dimostra che, dato un qualunque stato iniziale, l'effetto delle collisioni è quello di portare il sistema in uno stato finale di

a.
Rudolf Julius Emanuel Clausius (1822-1888), uno dei padri della termodinamica, ha coniato il termine "entropia".

equilibrio caratterizzato dalla distribuzione di Maxwell e che nel corso di guesta evoluzione il valore di una particolare funzione di stato (che indica con H) decresce monotonicamente fino a raggiungere un minimo all'equilibrio. Le leggi del moto sembrerebbero dunque permettere una riduzione alla meccanica anche del secondo principio, spiegando l'approccio irreversibile all'equilibrio e l'aumento dell'entropia. La validità del "teorema H" di Boltzmann è ben presto soggetta a critiche e messa in discussione, sia da parte di chi sostiene comunque la bontà dell'ipotesi atomica, come il suo maestro Joseph Loschmidt, sia – e soprattutto, insistentemente – da chi ritiene che essa sia priva di fondamento e che sia dunque vano ogni tentativo di fornire una base meccanica ai principi della termodinamica. L'obiezione è semplice, ma al tempo stesso concettualmente fortissima: le leggi della dinamica sono reversibili e non è quindi possibile pensare di spiegare attraverso di esse comportamenti intrinsecamente irreversibili. Se un gas confinato inizialmente in un volume dato viene lasciato libero di espandersi in una cavità, non lo si osserverà mai ritornare spontaneamente nella condizione iniziale, mentre le leggi della dinamica non lo proibiscono affatto. Anzi, prevedono che succeda esattamente questo, purché si prenda come stato iniziale quello finale, dopo l'espansione, invertendo le velocità delle molecole del gas.

La battaglia in difesa dell'ipotesi atomistica, e della fondatezza di una interpretazione dei fenomeni macroscopici sulla base delle proprietà dei costituenti microscopici, sarà la principale occupazione di Boltzmann fino alla sua morte nel 1906. Il primo passo consiste nella ammissione esplicita che il suo teorema H non discende esclusivamente dalla meccanica, ma comporta l'assunzione di ipotesi probabilistiche, e porta gradualmente a una lettura del secondo principio che vede l'approccio irreversibile all'equilibrio non più come una rigida necessità, ma come la realizzazione della sequenza di stati del sistema di gran lunga più probabile. Per chiarire il senso della nozione di "stato più probabile", Boltzmann introduce nel 1877 un approccio al problema radicalmente diverso, che conduce però alle medesime conclusioni.

Anziché studiare l'evoluzione temporale di un singolo sistema, Boltzmann associa ad ogni possibile stato macroscopico una probabilità, proporzionale al numero di modi diversi in cui si può distribuire l'energia tra i numerosi microsistemi che lo compongono. In questo modo si può associare la grandezza macroscopica "entropia di uno stato" alla sua probabilità (più precisamente, al logaritmo della sua "molteplicità") e lo stato di equilibrio, quello con il massimo valore dell'entropia, corrisponde semplicemente allo stato più probabile. È l'atto di nascita della meccanica statistica.

Che la "maggiore probabilità" corrisponda nei fatti a una certezza osservativa discende dal numero estremamente elevato dei componenti microscopici del sistema considerato. Come Boltzmann fa osservare, rispondendo ai suoi critici, dubitare della validità della meccanica statistica solo perché non si sono mai osservati fenomeni possibili in linea di principio è come sostenere l'infondatezza del calcolo elementare delle probabilità, perché non si è mai osservata, lanciando mille volte una moneta, una sequenza di mille "teste", anche se la probabilità che ciò accada non è rigorosamente nulla.

Ludwig Eduard Boltzmann (1844-1906), insieme a J.C. Maxwell e a J.W. Gibbs, ha gettato le basi della meccanica statistica.

c. Sulla tomba di Boltzmann allo Zentralfriedhof di Vienna è incisa l'epigrafe con la famosa formula per l'entropia che gli è attribuita.

Che i numeri in gioco, parlando di una quantità macroscopica di gas, fossero estremamente elevati era del tutto ovvio. Ma quali fossero esattamente è rimasta a lungo una domanda senza risposta precisa. Anche per questa ragione, la relazione di proporzionalità tra entropia e probabilità ipotizzata da Boltzmann vede nella sua espressione la presenza di una costante, il cui valore rimane indeterminato. Incisa sulla sua tomba come riconoscimento al suo principale contributo alla fisica teorica, $S = k \log W$ è un'espressione che in quella forma Boltzmann non ha mai scritto. Ironia della storia, il primo a scriverla in quel modo, introducendo esplicitamente il termine k (o $k_{\rm g}$)

come comunemente si indica oggi) e calcolandone il valore, è stato, nella sua prima derivazione della legge di distribuzione spettrale della radiazione di corpo nero alla fine del 1900, Max Planck, che negli anni precedenti si era distinto come uno dei più autorevoli oppositori dell'ipotesi atomistica e dell'approccio probabilistico di Boltzmann (vd. anche p. 36 in Asimmetrie n. 19, ndr).